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The decomposition of spin-reducing representations of 
N = 2 supersymmetry 

A Restuccia and J G Taylor 
Department of Mathematics, King’s College, London, UK 

Received 24 May 1983 

Abstract. We decompose any spin-reducing representation of N = 2 supersymmetry into 
a direct integral of irreducible representations in a unique manner, in which each irrep 
has standard form. A single real number is required to classify the irreps in the general 
representations. 

1. Introduction 

The existence of a barrier at N = 3 in the construction of N-extended supersymmetric 
Yang-Mills (N-SYM) and supergravity (N-SGR) theories was shown recently for 4 - s ~ ~  
and 3- and 4 - s ~ ~  in four dimensions (RoEek and Siegel 1981, Rivelles and Taylor 
1981, Taylor 1982a) and more recently in various dimensions d S 11 for appropriate 
N-SYM and N-SGR theories (Rivelles and Taylor 1983). There appear to be essentially 
three ways to avoid this barrier, by: (i) using N/2 supersymmetry explicitly to describe 
the theories, (ii) destroying explicit Lorentz and gauge covariance by choosing the 
light-cone gauge, or (iii) changing the supersymmetry algebra by the introduction of 
central charges. In order to construct a powerful enough framework within which the 
finiteness of N-SGR can be analysed to all orders, it appears necessary to adopt path 
(iii) above since (i) will only allow finiteness to be proved up to (N - 1) loops (Grisaru 
and Siegel 2982) and not to all orders by (ii) (Taylor 1982b). Path (iii) has been 
advocated by one of us (Taylor 1982c) and various candidate Lagrangians for N = 4, 
6 and 8 SGR presented at the linearised level in which central charges play a crucial 
role (Taylor 1981). 

The particular feature possessed by the use of central charges to avoid the N = 3 
barrier is that certain irreducible representations (irreps) of the SUSY algebra can arise 
which have only half the maximum spin of that possessed by the SUSY algebra without 
central charges. This ‘spin reduction’ property, known several years ago (Sohnius 
1978), corresponds to the masslessness of SUSY irreps in a higher-dimensional space- 
time in which the extra dimensions arise as coordinates related to the central charges 
as their canonical momenta. The occurrence of spin reduction is then only natural 
as a feature of massless, as compared with massive, irreps of SUSY. 

The possibility of using these spin-reducing irreps, with central charges, to construct 
full nonlinear theories of 4 - s ~ ~  and N-SGR has been made more feasible by the 
recent construction of a dynamical theory of these irreps using the extra dimensions 
in a geometric fashion (Restuccia and Taylor 1983). We have now to determine how 
this geometry is constrained in order that suitable spin-reducing irreps arise so as to 
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give the nonlinearisation of the linearised theories (Taylor 1981). However, even for 
N = 2, the spin-reducing properties do not automatically lead to irreps, but in general 
to multiplets with an infinite number of components. This has been shown for N = 2 
for a purely scalar theory in which supersymmetry has been neglected (Gorse et a f  
1983). Similar features happen for higher N ,  though a recent analysis (Bufton and 
Taylor 1983) has shown how a finite spin-reducing irrep can be constructed for N = 4 
by suitable dimensional reduction from ten dimensions. We will consider here solely 
the case of N = 2, where a similar approach to that is not appropriate. We will see 
that we can define a set of spin-reducing irreps for N = 2, each with the expected 
field content (Sohnius 1978), and that any spin-reducing superfield can be decomposed 
into a direct integral (over a single real parameter) of such irreps. Such an integral 
representation has been given in a general form (Rands and Taylor 1983), though 
our analysis of the present case will be more direct, and also allow a precise definition 
to be given of the representation in this case; such precision was lacking in the original 
case. 

We set out our notation and the essential solution to our problem of decomposition 
in $ 2 ,  and give the direct integral representation in li 3. Section 4 gives a conclusion. 

2. Decomposition of multiplets in terms of irreducible ones 

Let 4(x,  8, e, x 5 ,  x 6 )  be an N = 2 superfield which satisfies the spin-reducing condition 

p:DLc$ = z1'Da,q5, d:Da,4 = YIPh4, (2.1) 
where z "  = ~ " [ a , 5  + i a,.], with 1 si, j s 2. In general 4 may have external indices 
which we have not written. It is a well known result (Taylor 1980) that if (2.1) is 
satisfied then only Q b  is needed as the spinor generator of the PoincarC superalgebra. 
This is the way in which spin reducing follows and it is crucially related with the 
possibility of avoiding the N = 3 barrier (Rivelles and Taylor 1983). 

All the components ~ ~ ~ ) 4 ) 8 = , q = X 5 = X . = ~  of 4 can be expressed in terms of 
D ~ m ) ' ~ l s = ~ = x ~ = X 6 = 0  and their derivatives with respect to x , x at 8 = 8 = x = x = 0. 
Moreover, (2.1) yields 

5 6  - 5 6  

z l ' i ' k 4  = p 2s ic$ (2.2) 

which restricts the independent data needed to describe the x 5 ,  x 6  evolution. In the 
case of one real central charge (2.2) restricts these data solely to 4 and a54. In the 
general case we have an infinite set of initial data (Gorse et a1 1983). The superfield 
4(x ,  e,#, x 5 ,  x6) which satisfies (2.1) is therefore expected to be highly reducible and 
we are interested in its decomposition in terms of irreducible multiplets. 

In order to isolate an irreducible representation from 4 satisfying (1) we need two 
different kinds of constraints. One set of constraints relates the different components 
Dmc$ls=~=x~-x6',o, while the other set of constraints must relate the derivatives of 
these quantities with respect to x 5  and x 6  in terms of the finite independent data for 
the x 5 , x 6  evolution. In the case of the hypermultiplet 4' the first set of constraints 
is given by 

Da(t4,) = 0, ( 2 . 3 ~ )  
which implies that all the components of D m c $ ( B = e = , 5 = X 6 = 0  can be written in terms of 
c $ I I B = ~ = X 5 = X 6 = 0 ,  D a r ~ 1 / 0 = e = X 5 = X 6 = 0  and the derivatives with respect to x and x 6  of 5 
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these independent components. The spin-reducing condition (2.1) yields 

D a ( i # , ,  = 0 ,  (2.36) 

and (2.3~) and (2.36) are the usual defining conditions for the hypermultiplet. (2.3) 
does not define an irreducible multiplet, as we have noted before, and we need further 
constraints which will restrict the x5, x 6  evolution. We are interested in finding the 
general requirement which, together with (2.3), yields the irreducibility of the hyper- 
multiplet. Moreover, we are going to prove that, given a general N = 2 superfield 
satisfying the spin-reducing condition (2.1), it can always be decomposed in an unique 
way in terms of the one-parameter set of superfields w,(x, 8, e, x5 ,  x6) defined by the 
covariant condition, in addition to equation (2.2), 

asw, =tan cp a6w,. (2.4) 
(2.3) and (2.4) for a fixed cp define the irreducible hypermultiplet with one central 
charge in the cp direction in the x5, x6  plane. 

3. Superposition of a, modes 

For cp = 0, (2.4) defines the central charge in the x6  direction, while for cp = ~ / 2 ,  (2.4) 
defines one central charge in the x 5  direction. In general we may consider the following 
change of variables: 

(3.1) 5 6 y 6  = -cos cpx'fsin cp x 6 , y5=sincpx +coscpx , 

If w, satisfies (2.4) then 

(3.2) 
which define a multiplet with only one central charge in the y s  direction. We have 
thus shown that the condition (2.4) always defines a multiplet with only one central 
charge. Let us now consider a general solution # of (2.1); it automatically satisfies 
(2.2). It is a well known result that the general solution of (2.2) can be written as a 
superposition of modes 4,, 

2 2 
a y 6 %  = 0 ,  aySW, = P  

(3.3u) 

where 

4, = v , ( P , ~ , 6 , x 5 ) w , ( P , ~ , ~ , x 6 ) .  (3.36) 
The expansion (3.3) follows from the differentiability of the solutions of an el!iptic 
equation L u  = 0 in terms of that of the coefficients of the elliptic operator L (Hopf 
1931, Douglis and Nirenberg 1955) and the Weirstrass approximation theorem. We 
obtain from (2.2) 

(3.4) 
where v i  and w i  indicate derivatives with respect to x 5  and x6 respectively. The first 
term in (3.4) is a function of xs  and the second of x6  only, consequently we must have 

(3.5a, 6) 

where e ,  is independent of x5  and x6, The range of c, is (-CO, +CO). The general 

v ; / v ,  + w ; / w ,  = p  2 , 

2 2 v ; / v ,  = c , p  9 w; /w ,  = (1 - C , ) P  , 
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solution of (3.5a 1 is a linear combination of the general solutions, U ;  and U,, of 

(3 .6 )  

Analogously, the general solution of (3 .56 )  is a linear combination of the general 

+, + 1 / 2  U, / v u  = c, lpl ,  V E ' / U ,  = c;':Ipl. 

( 3 .7 )  

(3.8) 

(3 .9 )  

(3.10) 

Without loss of generality we can always take 6, =tan q, consequently c, = sin2 q. 
are the two independent modes which 

define one central charge in the q direction while 4;- ,  4;' are the two independent 
modes which define one central charge in the -q direction. 

We have thus proved that 4, has two central charges, one in the +q direction and 
the other in the -q direction. Both central charges a re  defined by the irreducible 
condition (2.4). Therefore we can always express 

(3 .9 )  and (3.10) show that 4:+ and 4; 

p ,  8, e, x', x') as 
+ T i 2  

4 ( p ,  8, 8, x 5 ,  x6)  = T w,P(p, 0, 8, x ' ,  x 6 )  dq, ( 3 . 1 1 )  
-?;/? 

where w ,  satisfies (2.4). 
We note that the different modes w ,  i n  (3.11) are not mixed by SUSY and/or 

central charge transformations; this fact is a direct consequence of the covariance of 
(2.4) under both transformations. The uniqueness of the decomposition (3.1 1) arises 
trivially from the independence of the cylindrical exponentials in the x5-x6 function 
space. We may write (3.11) in terms of polar coordinates p ,  8 in the x 5 ,  x 6  plane as 

+ T i 2  

4 = ~ - l  J {exp[IeIp cos(8-q)1A(cp!+exp[-IpIp c w - q ) I B ( q ) i d q ,  
 ti: 2 

which is the usual decomposition of 4 in terms of cylindrical exponentials. The 
uniqueness of this decomposition is well known. 

We also remark the fact that this representation makes precise the general integral 
decomposition of degenerate spin-reducing representations given earlier (Rands and 
Taylor 1983). 

We may now consider the transformation properties of 4 under SUSY transforma- 
tions. From (3.11) we obtain 

--7r/2 

84 = T- '  (EQ + i Q ) w ,  dq. 
- n / 2  
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In particular the transformation laws for the irreducible hypermultiplet with one 
central charge in the -cp direction are the usual ones 

6 A  = 64 + ilcP, 64,  = 2i5,,Ei + 2i(a$j;A,, 

SE, = -5: id E 4 = 21([d),,A' - 2i&E,, - ( E  ,8c)Y$cx, 

but with 

E, = ( 1 7- i tan i p ) ~ , ,  F, ~ d l ~ A , I x ~ = x ~ = ( l .  

4. Conclusions 

One of the important features of our result is the appearance of a new parameter 
describing the direction in the x 5 - - x h  plane along which the central charge must lie 
for a given irrep. We note that new parameters have already been discovered in  the 
decomposition of spin-reducing N = 4 multiplets (Bufton and Taylor 1983). The 
parameter we have now obtained is of a different character from those obtained 
previously. Those arose from the additional constraints 

a: = a,z ( 5  d i s 10) (4.1) 

with C, a,  = 1. We may still choose complex central charges along each of these six 
directions, and each of these gives reducible representations, which are then decompos- 
able by our present analysis. 

The new parameter, for N = 2, or the set of six new parameters for N = 4 (or 7 
for N = 8,, will enter in the construction of N-SYM or N-SGR by way of suitable field 
strength or torsion constraints. For N = 2 the parameter q would only be relevant if 
two different spin-reducing central charge irreps were required to construct N = 2 
SGR. Due to the fact that there is only one vector field (the Maxwell field) availab!e 
to gauge local central charge transformations, such a possibility cannot occur. For 
N = 4 SGR there are six physical gauge vectors, so that we can envisage a form of 
4 - s ~ ~  with multiplets with three complex off-shell central charges. 'Torsion constraints 
might be expected to contain the three angles 9,. There is the alternative possibility 
of having multiplets with six real central charges, with no overall internal symmetry 
(as compared with the overall SU(2) symmetry of the previous case). We cannot 
decide between these two cases without a careful analysis of solutions to torsion 
constraints. We propose to present this elsewhere (Hassoun er a1 1983). 
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